Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.070
Filtrar
1.
J Neuroimmunol ; 390: 578346, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38648696

RESUMO

The frequency of corticospinal tract (CST) T2/FLAIR hyperintensity in disorders with neuroglial antibodies is unclear. Herein, we retrospectively reviewed brain MRIs of 101 LGI1-antibody encephalitis patients, and observed CST hyperintensity in 30/101 (30%). It was mostly bilateral (93%), not associated with upper motor neuron signs/symptoms (7%), and frequently decreased over time (39%). In a systematic review including patients with other neuroglial antibodies, CST hyperintensity was reported in 110 with neuromyelitis optica (94%), myelin oligodendrocyte glycoprotein-associated disease (2%), Ma2-antibody (3%) and GAD65-antibody paraneoplastic neurological syndrome (1%). CST hyperintensity is not an infrequent finding in LGI1-Ab encephalitis and other disorders with neuroglial antibodies.


Assuntos
Autoanticorpos , Encefalite , Peptídeos e Proteínas de Sinalização Intracelular , Tratos Piramidais , Humanos , Autoanticorpos/imunologia , Autoanticorpos/sangue , Feminino , Pessoa de Meia-Idade , Masculino , Estudos Retrospectivos , Idoso , Adulto , Encefalite/imunologia , Encefalite/diagnóstico por imagem , Tratos Piramidais/diagnóstico por imagem , Tratos Piramidais/patologia , Tratos Piramidais/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Imageamento por Ressonância Magnética , Adulto Jovem , Neuroglia/patologia , Neuroglia/imunologia , Adolescente , Idoso de 80 Anos ou mais , Doenças do Sistema Nervoso Central/imunologia , Doenças do Sistema Nervoso Central/diagnóstico por imagem
2.
Int Immunopharmacol ; 132: 111942, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38565045

RESUMO

Endometriosis (EM) is a gynecological inflammatory disease often accompanied by stress, chronic pelvic pain (CPP), anxiety, and depression, leading to a diminished quality of life. This review aims to discuss the relationship between systemic and local inflammatory responses in the central nervous system (CNS), focusing on glial dysfunctions (astrocytes and microglia) as in critical brain regions involved in emotion, cognition, pain processing, anxiety, and depression. The review presents that EM is connected to increased levels of pro-inflammatory cytokines in the circulation. Additionally, chronic stress and CPP as stressors may contribute to the dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, depleting the production of inflammatory mediators in the circulatory system and the brain. The systemic cytokines cause blood-brain barrier (BBB) breakdown, activate microglia in the brain, and lead to neuroinflammation. Furthermore, CPP may induce neuronal morphological alterations in critical regions through central sensitization and the activation of glial cells. The activation of glial cells, particularly the polarization of microglia, leads to the activation of the NLRP3 inflammasome and the overproduction of inflammatory cytokines. These inflammatory cytokines interact with the signaling pathways involved in neural plasticity. Additionally, persistent inflammatory conditions in the brain lead to neuronal death, which is correlated with a reduced volume of key brain regions such as the hippocampus. This review highlights the involvement of glial cells in the pathogenesis of the mental comorbidities of EM (i.e., pain, anxiety, and depression) and to discuss potential therapeutic approaches for targeting the inflammation and activation of microglia in key brain regions.


Assuntos
Ansiedade , Depressão , Endometriose , Neuroglia , Humanos , Feminino , Endometriose/imunologia , Endometriose/patologia , Depressão/imunologia , Depressão/etiologia , Depressão/metabolismo , Ansiedade/imunologia , Animais , Neuroglia/imunologia , Inflamação/imunologia , Estresse Psicológico/imunologia , Citocinas/metabolismo , Encéfalo/imunologia , Encéfalo/patologia , Encéfalo/metabolismo
3.
Vis Neurosci ; 39: E005, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36164752

RESUMO

To study the macroglia and microglia and the immune role in long-time light exposure in rat eyes, we performed glial cell characterization along the time-course of retinal degeneration induced by chronic exposure to low-intensity light. Animals were exposed to light for periods of 2, 4, 6, or 8 days, and the retinal glial response was evaluated by immunohistochemistry, western blot and real-time reverse transcription polymerase chain reaction. Retinal cells presented an increased expression of the macroglia marker GFAP, as well as increased mRNA levels of microglia markers Iba1 and CD68 after 6 days. Also, at this time-point, we found a higher number of Iba1-positive cells in the outer nuclear layer area; moreover, these cells showed the characteristic activated-microglia morphology. The expression levels of immune mediators TNF, IL-6, and chemokines CX3CR1 and CCL2 were also significantly increased after 6 days. All the events of glial activation occurred after 5-6 days of constant light exposure, when the number of photoreceptor cells has already decreased significantly. Herein, we demonstrated that glial and immune activation are secondary to neurodegeneration; in this scenario, our results suggest that photoreceptor death is an early event that occurs independently of glial-derived immune responses.


Assuntos
Interleucina-6 , Neuroglia , Lesões por Radiação , Retina , Degeneração Retiniana , Animais , Quimiocinas/genética , Quimiocinas/metabolismo , Interleucina-6/metabolismo , Luz , Neuroglia/imunologia , RNA Mensageiro/genética , Lesões por Radiação/etiologia , Lesões por Radiação/imunologia , Ratos , Retina/imunologia , Retina/efeitos da radiação , Degeneração Retiniana/etiologia , Degeneração Retiniana/imunologia
4.
PLoS Biol ; 20(1): e3001456, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35081110

RESUMO

In traumatic brain injury (TBI), the initial injury phase is followed by a secondary phase that contributes to neurodegeneration, yet the mechanisms leading to neuropathology in vivo remain to be elucidated. To address this question, we developed a Drosophila head-specific model for TBI termed Drosophila Closed Head Injury (dCHI), where well-controlled, nonpenetrating strikes are delivered to the head of unanesthetized flies. This assay recapitulates many TBI phenotypes, including increased mortality, impaired motor control, fragmented sleep, and increased neuronal cell death. TBI results in significant changes in the transcriptome, including up-regulation of genes encoding antimicrobial peptides (AMPs). To test the in vivo functional role of these changes, we examined TBI-dependent behavior and lethality in mutants of the master immune regulator NF-κB, important for AMP induction, and found that while sleep and motor function effects were reduced, lethality effects were enhanced. Similarly, loss of most AMP classes also renders flies susceptible to lethal TBI effects. These studies validate a new Drosophila TBI model and identify immune pathways as in vivo mediators of TBI effects.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Drosophila melanogaster , Neuroglia/imunologia , Animais , Peptídeos Antimicrobianos/genética , Peptídeos Antimicrobianos/metabolismo , Lesões Encefálicas Traumáticas/imunologia , Lesões Encefálicas Traumáticas/mortalidade , Modelos Animais de Doenças , Imunidade Inata , Locomoção , Masculino , Mutação , NF-kappa B/genética , NF-kappa B/metabolismo , Transtornos do Sono-Vigília , Transcriptoma
5.
Viruses ; 13(12)2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34960633

RESUMO

The environment of the central nervous system (CNS) represents a double-edged sword in the context of viral infections. On the one hand, the infectious route for viral pathogens is restricted via neuroprotective barriers; on the other hand, viruses benefit from the immunologically quiescent neural environment after CNS entry. Both the herpes simplex virus (HSV) and the rabies virus (RABV) bypass the neuroprotective blood-brain barrier (BBB) and successfully enter the CNS parenchyma via nerve endings. Despite the differences in the molecular nature of both viruses, each virus uses retrograde transport along peripheral nerves to reach the human CNS. Once inside the CNS parenchyma, HSV infection results in severe acute inflammation, necrosis, and hemorrhaging, while RABV preserves the intact neuronal network by inhibiting apoptosis and limiting inflammation. During RABV neuroinvasion, surveilling glial cells fail to generate a sufficient type I interferon (IFN) response, enabling RABV to replicate undetected, ultimately leading to its fatal outcome. To date, we do not fully understand the molecular mechanisms underlying the activation or suppression of the host inflammatory responses of surveilling glial cells, which present important pathways shaping viral pathogenesis and clinical outcome in viral encephalitis. Here, we compare the innate immune responses of glial cells in RABV- and HSV-infected CNS, highlighting different viral strategies of neuroprotection or Neuroinflamm. in the context of viral encephalitis.


Assuntos
Encefalite Viral/imunologia , Herpes Simples/imunologia , Imunidade Inata , Inflamação , Vírus da Raiva/imunologia , Raiva/imunologia , Simplexvirus/imunologia , Animais , Astrócitos/imunologia , Astrócitos/virologia , Barreira Hematoencefálica/virologia , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/virologia , Encefalite Viral/virologia , Herpes Simples/virologia , Humanos , Microglia/imunologia , Microglia/virologia , Neuroglia/imunologia , Neuroglia/virologia , Raiva/virologia , Transdução de Sinais
6.
Int J Mol Sci ; 22(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34948035

RESUMO

Epilepsy is one of the most common neurological conditions. Yearly, five million people are diagnosed with epileptic-related disorders. The neuroprotective and therapeutic effect of (endo)cannabinoid compounds has been extensively investigated in several models of epilepsy. Therefore, the study of specific cell-type-dependent mechanisms underlying cannabinoid effects is crucial to understanding epileptic disorders. It is estimated that about 100 billion neurons and a roughly equal number of glial cells co-exist in the human brain. The glial population is in charge of neuronal viability, and therefore, their participation in brain pathophysiology is crucial. Furthermore, glial malfunctioning occurs in a wide range of neurological disorders. However, little is known about the impact of the endocannabinoid system (ECS) regulation over glial cells, even less in pathological conditions such as epilepsy. In this review, we aim to compile the existing knowledge on the role of the ECS in different cell types, with a particular emphasis on glial cells and their impact on epilepsy. Thus, we propose that glial cells could be a novel target for cannabinoid agents for treating the etiology of epilepsy and managing seizure-like disorders.


Assuntos
Endocanabinoides/metabolismo , Epilepsia/metabolismo , Neuroglia/metabolismo , Animais , Modelos Animais de Doenças , Epilepsia/tratamento farmacológico , Epilepsia/imunologia , Regulação da Expressão Gênica , Humanos , Terapia de Alvo Molecular , Neuroglia/imunologia
7.
Sci Rep ; 11(1): 23569, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876649

RESUMO

Microvascular compression of the trigeminal root entry zone (TREZ) is the main cause of most primary trigeminal neuralgia (TN), change of glial plasticity was previously studied in the TREZ of TN rat model induced by chronic compression. To better understand the role of astrocytes and immune cells in the TREZ, different cell markers including glial fibrillary acidic protein (GFAP), complement C3, S100A10, CD45, CD11b, glutamate-aspartate transporter (GLAST), Iba-1 and TMEM119 were used in the TN rat model by immunohistochemistry and flow cytometry. On the post operation day 28, GFAP/C3-positive A1 astrocytes and GFAP/S100A10-positive A2 astrocytes were activated in the TREZ after compression injury, there were no statistical differences in the ratios of A1/A2 astrocytes between the sham and TN groups. There was no significant difference in Iba-1-positive cells between the two groups. The ratios of infiltrating lymphocytes (CD45+CD11b-) (p = 0.0075) and infiltrating macrophages (CD45highCD11b+) (p = 0.0388) were significantly higher than those of the sham group. In conclusion, different subtypes A1/A2 astrocytes in the TREZ were activated after compression injury, infiltrating macrophages and lymphocytes increased, these neuroimmune cells in the TREZ may participate in the pathogenesis of TN rat model.


Assuntos
Neuralgia do Trigêmeo/imunologia , Neuralgia do Trigêmeo/patologia , Animais , Anexina A2/metabolismo , Astrócitos/imunologia , Astrócitos/metabolismo , Astrócitos/patologia , Complemento C3/metabolismo , Modelos Animais de Doenças , Citometria de Fluxo , Proteína Glial Fibrilar Ácida/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Linfócitos/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Neuroglia/imunologia , Neuroglia/metabolismo , Neuroglia/patologia , Ratos , Ratos Sprague-Dawley , Proteínas S100/metabolismo , Nervo Trigêmeo/imunologia , Nervo Trigêmeo/metabolismo , Nervo Trigêmeo/patologia
8.
Front Immunol ; 12: 783725, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804074

RESUMO

Interferons (IFNs) are cytokines that possess antiviral, antiproliferative, and immunomodulatory actions. IFN-α and IFN-ß are two major family members of type-I IFNs and are used to treat diseases, including hepatitis and multiple sclerosis. Emerging evidence suggests that type-I IFN receptors (IFNARs) are also expressed by microglia, astrocytes, and neurons in the central and peripheral nervous systems. Apart from canonical transcriptional regulations, IFN-α and IFN-ß can rapidly suppress neuronal activity and synaptic transmission via non-genomic regulation, leading to potent analgesia. IFN-γ is the only member of the type-II IFN family and induces central sensitization and microglia activation in persistent pain. We discuss how type-I and type-II IFNs regulate pain and infection via neuro-immune modulations, with special focus on neuroinflammation and neuro-glial interactions. We also highlight distinct roles of type-I IFNs in the peripheral and central nervous system. Insights into IFN signaling in nociceptors and their distinct actions in physiological vs. pathological and acute vs. chronic conditions will improve our treatments of pain after surgeries, traumas, and infections.


Assuntos
Dor Aguda/imunologia , Dor Crônica/imunologia , Interferon Tipo I/metabolismo , Interferon gama/metabolismo , Doenças Neuroinflamatórias/imunologia , Dor Aguda/patologia , Animais , Dor Crônica/patologia , Modelos Animais de Doenças , Humanos , Neuroglia/citologia , Neuroglia/imunologia , Neuroglia/patologia , Doenças Neuroinflamatórias/patologia , Nociceptores/imunologia , Nociceptores/metabolismo , Receptores de Interferon/metabolismo , Transdução de Sinais/imunologia , Medula Espinal/citologia , Medula Espinal/imunologia , Medula Espinal/patologia
9.
Nature ; 599(7883): 125-130, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34671159

RESUMO

Tissue maintenance and repair depend on the integrated activity of multiple cell types1. Whereas the contributions of epithelial2,3, immune4,5 and stromal cells6,7 in intestinal tissue integrity are well understood, the role of intrinsic neuroglia networks remains largely unknown. Here we uncover important roles of enteric glial cells (EGCs) in intestinal homeostasis, immunity and tissue repair. We demonstrate that infection of mice with Heligmosomoides polygyrus leads to enteric gliosis and the upregulation of an interferon gamma (IFNγ) gene signature. IFNγ-dependent gene modules were also induced in EGCs from patients with inflammatory bowel disease8. Single-cell transcriptomics analysis of the tunica muscularis showed that glia-specific abrogation of IFNγ signalling leads to tissue-wide activation of pro-inflammatory transcriptional programs. Furthermore, disruption of the IFNγ-EGC signalling axis enhanced the inflammatory and granulomatous response of the tunica muscularis to helminths. Mechanistically, we show that the upregulation of Cxcl10 is an early immediate response of EGCs to IFNγ signalling and provide evidence that this chemokine and the downstream amplification of IFNγ signalling in the tunica muscularis are required for a measured inflammatory response to helminths and resolution of the granulomatous pathology. Our study demonstrates that IFNγ signalling in enteric glia is central to intestinal homeostasis and reveals critical roles of the IFNγ-EGC-CXCL10 axis in immune response and tissue repair after infectious challenge.


Assuntos
Homeostase , Intestinos/imunologia , Intestinos/fisiologia , Neuroglia/imunologia , Neuroglia/fisiologia , Regeneração , Túnica Adventícia/imunologia , Túnica Adventícia/parasitologia , Animais , Quimiocina CXCL10/imunologia , Duodeno/imunologia , Duodeno/parasitologia , Duodeno/patologia , Duodeno/fisiologia , Feminino , Gliose , Homeostase/imunologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Interferon gama/imunologia , Intestinos/parasitologia , Intestinos/patologia , Masculino , Camundongos , Nematospiroides dubius/imunologia , Nematospiroides dubius/patogenicidade , Transdução de Sinais/imunologia , Infecções por Strongylida/imunologia , Infecções por Strongylida/parasitologia , Infecções por Strongylida/patologia
10.
Cells ; 10(9)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34571930

RESUMO

Localisation of mast cells (MCs) at the abluminal side of blood vessels in the brain favours their interaction with glial cells, neurons, and endothelial cells, resulting in the activation of these cells and the release of pro-inflammatory mediators. In turn, stimulation of glial cells, such as microglia, astrocytes, and oligodendrocytes may result in the modulation of MC activities. MCs, microglia, astrocytes, and oligodendrocytes all express P2X receptors (P2XRs) family members that are selectively engaged by ATP. As increased concentrations of extracellular adenosine 5'-triphosphate (ATP) are present in the brain in neuropathological conditions, P2XR activation in MCs and glial cells contributes to the control of their communication and amplification of the inflammatory response. In this review we discuss P2XR-mediated MC activation, its bi-directional effect on microglia, astrocytes and oligodendrocytes and role in neuroinflammation.


Assuntos
Inflamação/patologia , Mastócitos/imunologia , Neuroglia/imunologia , Neurônios/imunologia , Receptores Purinérgicos P2X/metabolismo , Animais , Humanos , Inflamação/imunologia , Inflamação/metabolismo
11.
J Neuropathol Exp Neurol ; 80(10): 933-943, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34498065

RESUMO

Resected lesions from the pineal region are rare specimens encountered by surgical pathologists, and their heterogeneity can pose significant diagnostic challenges. Here, we reviewed 221 pineal region lesions resected at New York-Presbyterian Hospital/Columbia University Irving Medical Center from 1994 to 2019 and found the most common entities to be pineal parenchymal tumors (25.3%), glial neoplasms (18.6%), and germ cell tumors (17.6%) in this predominantly adult cohort of patients. Six cases of a rare midline entity usually found exclusively in the fourth ventricle, the rosette-forming glioneuronal tumor, were identified. These tumors exhibit biphasic morphology, with a component resembling pilocytic astrocytoma admixed with variable numbers of small cells forming compact rosettes and perivascular pseudorosettes. Targeted sequencing revealed a 100% co-occurrence of novel and previously described genetic alterations in the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) signaling pathways, suggesting a synergistic role in tumor formation. The most common recurrent mutation, PIK3CA H1047R, was identified in tumor cells forming rosettes and perivascular pseudorosettes. A review of the literature revealed 16 additional cases of rosette-forming glioneuronal tumors in the pineal region. Although rare, this distinctive low-grade tumor warrants consideration in the differential diagnosis of pineal region lesions.


Assuntos
Neoplasias Encefálicas/patologia , Neuroglia/patologia , Glândula Pineal/patologia , Pinealoma/patologia , Formação de Roseta , Adolescente , Adulto , Neoplasias Encefálicas/imunologia , Criança , Feminino , Humanos , Masculino , Neuroglia/imunologia , Glândula Pineal/imunologia , Pinealoma/imunologia , Estudos Retrospectivos , Adulto Jovem
12.
Front Immunol ; 12: 639008, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394070

RESUMO

Background: Previous reports identified proteins associated with 'apoptosis' following cross-linking PrPC with motif-specific anti-PrP antibodies in vivo and in vitro. The molecular mechanisms underlying this IgG-mediated neurotoxicity and the role of the activated proteins in the apoptotic pathways leading to neuronal death has not been properly defined. Previous reports implicated a number of proteins, including apolipoprotein E, cytoplasmic phospholipase A2, prostaglandin and calpain with anti-PrP antibody-mediated 'apoptosis', however, these proteins are also known to play an important role in allergy. In this study, we investigated whether cross-linking PrPC with anti-PrP antibodies stimulates a neuronal allergenic response. Methods: Initially, we predicted the allergenicity of the epitope sequences associated with 'neurotoxic' anti-PrP antibodies using allergenicity prediction servers. We then investigated whether anti-PrP antibody treatment of mouse primary neurons (MPN), neuroblastoma cells (N2a) and microglia (N11) cell lines lead to a neuronal allergenic response. Results: In-Silico studies showed that both tail- and globular-epitopes were allergenic. Specifically, binding regions that contain epitopes for previously reported 'neurotoxic' antibodies such as ICSM18 (146-159), ICSM35 (91-110), POM 1 (138-147) and POM 3 (95-100) lead to activation of allergenic related proteins. Following direct application of anti-PrPC antibodies on N2a cells, we identified 4 neuronal allergenic-related proteins when compared with untreated cells. Furthermore, we identified 8 neuronal allergenic-related proteins following treatment of N11 cells with anti-PrPC antibodies prior to co-culture with N2a cells when compared with untreated cells. Antibody treatment of MPN or MPN co-cultured with antibody-treated N11 led to identifying 10 and 7 allergenic-related proteins when compared with untreated cells. However, comparison with 3F4 antibody treatment revealed 5 and 4 allergenic-related proteins respectively. Of importance, we showed that the allergenic effects triggered by the anti-PrP antibodies were more potent when antibody-treated microglia were co-cultured with the neuroblastoma cell line. Finally, co-culture of N2a or MPN with N11-treated with anti-PrP antibodies resulted in significant accumulation of NO and IL6 but not TNF-α in the cell culture media supernatant. Conclusions: This study showed for the first time that anti-PrP antibody binding to PrPC triggers a neuronal hypersensitivity response and highlights the important role of microglia in triggering an IgG-mediated neuronal hypersensitivity response. Moreover, this study provides an important impetus for including allergenic assessment of therapeutic antibodies for neurodegenerative disorders to derive safe and targeted biotherapeutics.


Assuntos
Anticorpos/imunologia , Hipersensibilidade/imunologia , Neurônios/imunologia , Proteínas PrPC/imunologia , Proteínas PrPC/metabolismo , Animais , Epitopos de Linfócito B/imunologia , Humanos , Camundongos , Neuroglia/imunologia
13.
Brain Res Bull ; 175: 196-204, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34339780

RESUMO

Reactive gliosis is a key feature and an important pathophysiological mechanism underlying chronic neurodegeneration following traumatic brain injury (TBI). In this study, we have explored the effects of intramuscular IGF-1 gene therapy on reactive gliosis and functional outcome after an injury of the cerebral cortex. Young adult male rats were intramuscularly injected with a recombinant adenoviral construct harboring the cDNA of human IGF-1 (RAd-IGF1), with a control vector expressing green fluorescent protein (RAd-GFP) or PBS as control. Three weeks after the intramuscular injections of adenoviral vectors, animals were subjected to a unilateral penetrating brain injury. The data revealed that RAd-IGF1 gene therapy significantly increased serum IGF1 levels and improved working memory performance after one week of TBI as compared to PBS or RAd-GFP lesioned animals. At the same time, when we analyzed the effects of therapy on glial scar formation, the treatment with RAd-IGF1 did not modify the number of glial fibrillary acidic protein (GFAP) positive cells, but we observed a decrease in vimentin immunoreactive astrocytes at 7 days post-lesion in the injured hemisphere compared to RAd-GFP group. Moreover, IGF-1 gene therapy reduced the number of Iba1+ cells with reactive phenotype and the number of MHCII + cells in the injured hemisphere. These results suggest that intramuscular IGF-1 gene therapy may represent a new approach to prevent traumatic brain injury outcomes in rats.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Terapia Genética/métodos , Gliose/genética , Gliose/terapia , Fator de Crescimento Insulin-Like I/genética , Microglia , Animais , Lesões Encefálicas Traumáticas/psicologia , Proteínas de Ligação ao Cálcio/metabolismo , Vetores Genéticos/administração & dosagem , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Injeções Intramusculares , Masculino , Memória de Curto Prazo , Proteínas dos Microfilamentos/metabolismo , Neuroglia/imunologia , Neuroproteção , Desempenho Psicomotor , Ratos , Resultado do Tratamento , Vimentina/metabolismo
14.
J Neurosci ; 41(31): 6582-6595, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34210779

RESUMO

Early studies in mouse neurodevelopment led to the discovery of the RE1 Silencing Transcription Factor (REST) and its role as a master repressor of neuronal gene expression. Recently, REST was reported to also repress neuronal genes in the human adult brain. These genes were found to be involved in pro-apoptotic pathways; and their repression, associated with increased REST levels during aging, were found to be neuroprotective and conserved across species. However, direct genome-wide REST binding profiles for REST in adult brain have not been identified for any species. Here, we apply this approach to mouse and human hippocampus. We find an expansion of REST binding sites in the human hippocampus that are lacking in both mouse hippocampus and other human non-neuronal cell types. The unique human REST binding sites are associated with genes involved in innate immunity processes and inflammation signaling which, on the basis of histology and recent public transcriptomic analyses, suggest that these new target genes are repressed in glia. We propose that the increases in REST expression in mid-adulthood presage the beginning of brain aging, and that human REST function has evolved to protect the longevity and function of both neurons and glia in human brain.SIGNIFICANCE STATEMENT The RE1 Silencing Transcription Factor (REST) repressor has served historically as a model for gene regulation during mouse neurogenesis. Recent studies of REST have also suggested a conserved role for REST repressor function across lower species during aging. However, direct genome-wide studies for REST have been lacking for human brain. Here, we perform the first genome-wide analysis of REST binding in both human and mouse hippocampus. The majority of REST-occupied genes in human hippocampus are distinct from those in mouse. Further, the REST-associated genes unique to human hippocampus represent a new set related to innate immunity and inflammation, where their gene dysregulation has been implicated in aging-related neuropathology, such as Alzheimer's disease.


Assuntos
Envelhecimento/metabolismo , Hipocampo/metabolismo , Neuroglia/metabolismo , Proteínas Repressoras/metabolismo , Idoso , Envelhecimento/imunologia , Animais , Feminino , Estudo de Associação Genômica Ampla , Hipocampo/imunologia , Humanos , Imunidade Inata/fisiologia , Masculino , Camundongos , Pessoa de Meia-Idade , Neuroglia/imunologia , Neurônios/metabolismo , Proteínas Repressoras/imunologia
15.
Int Immunopharmacol ; 98: 107882, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34182245

RESUMO

Daphnetin (7, 8-dihydroxycoumarin, DAPH), a coumarin derivative isolated from Daphne odora var., recently draws much more attention as a promising drug candidate to treat neuroinflammatory diseases due to its protective effects against neuroinflammation. However, itscontribution to chronic inflammatory pain is largely unknown. In the current work, we investigated the effects of DAPH in a murine model of inflammatory pain induced by complete Freund's adjuvant (CFA) and its possible underlying mechanisms. Our results showed that DAPH treatment significantly attenuated mechanical allodynia provoked by CFA. A profound inhibition of spinal glial activation, followed by attenuated expression levels of spinal pro-inflammatory cytokines, was observed in DAPH-treated inflammatory pain mice. Further study demonstrated that DAPH mediated negative regulation of spinal NF-κB pathway, as well as its preferential activation of Nrf2/HO-1 signaling pathway in inflammatory pain mice. This study, for the first time, indicated that DAPH might preventthe development of mechanical allodynia in mice with inflammatory pain. And more importantly, these data provide evidence for the potential application of DAPH in the treatment of chronic inflammatory pain.


Assuntos
Dor Crônica/tratamento farmacológico , Hiperalgesia/tratamento farmacológico , Dor/tratamento farmacológico , Umbeliferonas/farmacologia , Animais , Dor Crônica/imunologia , Dor Crônica/patologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Adjuvante de Freund/administração & dosagem , Adjuvante de Freund/imunologia , Heme Oxigenase-1/metabolismo , Humanos , Hiperalgesia/imunologia , Hiperalgesia/patologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/imunologia , Neuroglia/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/imunologia , Dor/imunologia , Dor/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/imunologia , Medula Espinal/patologia , Umbeliferonas/uso terapêutico
16.
Virology ; 559: 182-195, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33964684

RESUMO

Epstein-Barr Virus (EBV) is clinically related to various neurological ailments. The manipulation of neural homeostasis through altered glial cells functions is enigmatic. We investigated EBV mediated nuances in glial cells through direct infection (group-1) or by supplementing them with EBV-infected lymphocytes (PBMCs) supernatant (group-3). Also, the cells were co-cultured with infected PBMCs (group-2). Upon confirmation of infection in U-87 MG through qRT-PCR, the gene expression of crucial molecules was analysed. We reported enhanced expression of IL6 in group-1 and 3 unlike group-2. PBMCs migrated and invaded the matrigel significantly when exposed to group-1 and 3 conditions. Thus, EBV may aid neuroinflammatory reactions through PBMCs infiltration. Also, the exposure of neurons to conditioned supernatant from group-2 caused reduced neuronal healing. Additionally, group-1 milieu contained chemical modulators that induced glial cells death and reduced NF-κB. Conclusively, the three modes of EBV infection can influence glial cells' functions to maneuver the microenvironment distinctly.


Assuntos
Encéfalo/imunologia , Encéfalo/virologia , Herpesvirus Humano 4/imunologia , Inflamação/virologia , Neuroglia/virologia , Apoptose , Linhagem Celular Tumoral , Microambiente Celular , Expressão Gênica/imunologia , Homeostase , Humanos , Inflamação/imunologia , Leucócitos Mononucleares/imunologia , Neuroglia/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Quinase Induzida por NF-kappaB
17.
Acta Neuropathol ; 142(2): 243-257, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33950293

RESUMO

Progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) are neuropathologic subtypes of frontotemporal lobar degeneration with tau inclusions (FTLD-tau), primary tauopathies in which intracellular tau aggregation contributes to neurodegeneration. Gosuranemab (BIIB092) is a humanized monoclonal antibody that binds to N-terminal tau. While Gosuranemab passive immunotherapy trials for PSP failed to demonstrate clinical benefit, Gosuranemab reduced N-terminal tau in the cerebrospinal fluid of transgenic mouse models and PSP patients. However, the neuropathologic sequelae of Gosuranemab have not been described. In this present study, we examined the brain tissue of three individuals who received Gosuranemab. Post-mortem human brain tissues were studied using immunohistochemistry to identify astrocytic and microglial differences between immunized cases and a cohort of unimmunized PSP, CBD and aging controls. Gosuranemab immunotherapy was not associated with clearance of neuropathologic FTLD-tau inclusions. However, treatment-associated changes were observed including the presence of perivascular vesicular astrocytes (PVA) with tau accumulation within lysosomes. PVAs were morphologically and immunophenotypically distinct from the tufted astrocytes seen in PSP, granular fuzzy astrocytes (GFA) seen in aging, and astrocytic plaques seen in CBD. Additional glial responses included increased reactive gliosis consisting of bushy astrocytosis and accumulation of rod microglia. Together, these neuropathologic findings suggest that Gosuranemab may be associated with a glial response including accumulation of tau within astrocytic lysosomes.


Assuntos
Degeneração Lobar Frontotemporal/tratamento farmacológico , Lisossomos/metabolismo , Neuroglia/metabolismo , Tauopatias/tratamento farmacológico , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Astrócitos/imunologia , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/imunologia , Encéfalo/patologia , Degeneração Lobar Frontotemporal/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Neuroglia/imunologia , Neuroglia/patologia , Neurônios/patologia , Tauopatias/imunologia , Tauopatias/patologia , Proteínas tau/imunologia
18.
Sci Rep ; 11(1): 10722, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34021227

RESUMO

Staphylococcus aureus infections of the central nervous system are serious and can be fatal. S. aureus is commonly present in the nasal cavity, and after injury to the nasal epithelium it can rapidly invade the brain via the olfactory nerve. The trigeminal nerve constitutes another potential route of brain infection. The glia of these nerves, olfactory ensheathing cells (OECs) and trigeminal nerve Schwann cells (TgSCs), as well as astrocytes populating the glia limitans layer, can phagocytose bacteria. Whilst some glial responses to S. aureus have been studied, the specific responses of different glial types are unknown. Here, we compared how primary mouse OECs, TgSCs, astrocytes and microglia responded to S. aureus. All glial types internalized the bacteria within phagolysosomes, and S. aureus-conjugated BioParticles could be tracked with subtle but significant differences in time-course of phagocytosis between glial types. Live bacteria could be isolated from all glia after 24 h in culture, and microglia, OECs and TgSCs exhibited better protection against intracellular S. aureus survival than astrocytes. All glial types responded to the bacteria by cytokine secretion. Overall, OECs secreted the lowest level of cytokines, suggesting that these cells, despite showing strong capacity for phagocytosis, have immunomodulatory functions that can be relevant for neural repair.


Assuntos
Sistema Nervoso Central/microbiologia , Resistência à Doença , Interações Hospedeiro-Patógeno , Neuroglia/microbiologia , Sistema Nervoso Periférico/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/fisiologia , Biomarcadores , Células Cultivadas , Sistema Nervoso Central/imunologia , Citocinas/metabolismo , Resistência à Doença/imunologia , Interações Hospedeiro-Patógeno/imunologia , Microglia , Neuroglia/imunologia , Neuroglia/metabolismo , Sistema Nervoso Periférico/imunologia , Fagocitose/imunologia , Infecções Estafilocócicas/imunologia
19.
Int J Mol Sci ; 22(6)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33810144

RESUMO

Multiple sclerosis (MS) has been considered to specifically affect the central nervous system (CNS) for a long time. As autonomic dysfunction including dysphagia can occur as accompanying phenomena in patients, the enteric nervous system has been attracting increasing attention over the past years. The aim of this study was to identify glial and myelin markers as potential target structures for autoimmune processes in the esophagus. RT-PCR analysis revealed glial fibrillary acidic protein (GFAP), proteolipid protein (PLP), and myelin basic protein (MBP) expression, but an absence of myelin oligodendrocyte glycoprotein (MOG) in the murine esophagus. Selected immunohistochemistry for GFAP, PLP, and MBP including transgenic mice with cell-type specific expression of PLP and GFAP supported these results by detection of (1) GFAP, PLP, and MBP in Schwann cells in skeletal muscle and esophagus; (2) GFAP, PLP, but no MBP in perisynaptic Schwann cells of skeletal and esophageal motor endplates; (3) GFAP and PLP, but no MBP in glial cells surrounding esophageal myenteric neurons; and (4) PLP, but no GFAP and MBP in enteric glial cells forming a network in the esophagus. Our results pave the way for further investigations regarding the involvement of esophageal glial cells in the pathogenesis of dysphagia in MS.


Assuntos
Biomarcadores , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Esôfago/metabolismo , Expressão Gênica , Neuroglia/imunologia , Neuroglia/metabolismo , Animais , Sistema Nervoso Central/patologia , Feminino , Imunofluorescência , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Esclerose Múltipla/etiologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
Genes (Basel) ; 12(4)2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805190

RESUMO

Many organisms are able to elicit behavioral change in other organisms. Examples include different microbes (e.g., viruses and fungi), parasites (e.g., hairworms and trematodes), and parasitoid wasps. In most cases, the mechanisms underlying host behavioral change remain relatively unclear. There is a growing body of literature linking alterations in immune signaling with neuron health, communication, and function; however, there is a paucity of data detailing the effects of altered neuroimmune signaling on insect neuron function and how glial cells may contribute toward neuron dysregulation. It is important to consider the potential impacts of altered neuroimmune communication on host behavior and reflect on its potential role as an important tool in the "neuro-engineer" toolkit. In this review, we examine what is known about the relationships between the insect immune and nervous systems. We highlight organisms that are able to influence insect behavior and discuss possible mechanisms of behavioral manipulation, including potentially dysregulated neuroimmune communication. We close by identifying opportunities for integrating research in insect innate immunity, glial cell physiology, and neurobiology in the investigation of behavioral manipulation.


Assuntos
Imunidade Inata , Neuroglia/fisiologia , Vespas/fisiologia , Animais , Comportamento Animal , Interações Hospedeiro-Parasita , Neuroglia/imunologia , Neurônios/imunologia , Vespas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA